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We present a minimal microscopic model for the magnetically induced metal-insulator transition in isoelec-
tronic alloys FeSi1−xGex. We solve the model in the mean-field approximation and we find that the transition
between the band insulator and the ferromagnetic metal proceeds generically via an intermediate weakly
magnetic metallic phase. We show that the experimental data for the resistivity, low-temperature specific heat,
and magnetization in small applied fields are in good qualitative agreement with our results.
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I. INTRODUCTION

The magnetic susceptibility of FeSi exhibits unconven-
tional behavior: at low temperatures it is thermally activated,
it reaches a maximum around 500 K, and it decreases at high
temperatures according to the Curie-Weiss law.1 At low tem-
peratures, also the specific heat is thermally activated. The
temperature dependence of the resistivity is semiconducting
except at the lowest temperatures2 when the conductivity is
presumably dominated by an extrinsic impurity band.

The unusual temperature dependence of the magnetic sus-
ceptibility has been interpreted within two different pictures.
The first picture postulates the existence of very narrow va-
lence and conduction bands, as first suggested in Ref. 1.
More recently, this phenomenological ansatz has been inter-
preted in terms of the so-called Kondo insulator picture,
which assumes the existence of an itinerant and a localized
band with weak mutual hybridization.3,4 If only the lower
hybridized band is occupied, then a small-gap insulator with
a high density of states at the band edges is naturally formed.
Very recently, the Kondo insulator picture has been claimed
to disagree with the recent results of soft x-ray photoelectron
spectroscopy.5

Alternatively, the temperature dependence of the suscep-
tibility has been interpreted as a consequence of the strong
ferromagnetic fluctuations in FeSi,6,7 which are caused by a
competing ferromagnetic phase.8 Very recently, this nearly
ferromagnetic semiconductor point of view, which is based
on the results of the standard band theory, has received ad-
ditional support from high-resolution angle resolved photo-
emission spectroscopy.9

Further support for the nearly ferromagnetic semiconduc-
tor point of view comes from the study of the isoelectronic
compound FeGe. Namely, below 279 K, a long-range spiral
state with a period of �700 Å forms in FeGe. This spiral
state can be understood as a ferromagnet which is unstable,
due to the lack of inversion symmetry, to the formation of
long-range periodic structures, the so-called Dzyaloshinskii
spirals.10

More recently, the isoelectronic alloys FeSi1−xGex have
been studied in detail and an unusual metal-insulator transi-
tion between the insulating state at small x and the metallic
state at large x has been found.11 The most interesting aspect
of this result is as follows. Under increasing the Ge content,
the lattice expands and therefore the correlation effects

should be larger in FeGe than in FeSi. Thus one might expect
that FeGe is an insulator and FeSi is a metal, just opposite to
what is actually observed. A solution to this puzzle has been
suggested within a phenomenological band scheme,12 ac-
cording to which the metal-insulator transition is being
driven by the magnetic transition from the paramagnetic
state of the less correlated FeSi to the long-range spiral fer-
romagnetic state of the more correlated FeGe.

In this paper we construct a minimal microscopic model
which reproduces the results of Ref. 12. Within the mean-
field approximation we construct the global phase diagram of
the microscopic model. We find that, in between the para-
magnetic insulator and the fully polarized ferromagnet, there
exist weakly magnetic metallic phases. We show that the
experimental data of Ref. 11 for the resistivity, low-
temperature specific heat, and magnetization in small applied
fields in FeSi1−xGex are in good qualitative agreement with
the existence of such an intermediate phase for 0.25�x
�0.6.

II. MINIMAL MODEL

FeSi crystallizes in the B20 structure which can be
thought of as a distorted rocksalt lattice. The Bravais lattice
is simple cubic and the cell contains 4 f.u. of FeSi. The
overall point symmetry is tetrahedral and the space group is
nonsymmorphic. State of the art band-structure
calculations13,14 predict that in the energy range from −6 eV
to +6 eV around the Fermi level there are four nonbonding
Fe 3d bands together with 16 bonding and 16 antibonding
bands formed by hybridization of the Fe 3d orbitals with the
Si 3p orbitals. The states in the immediate vicinity of the
Fermi level are of predominantly Fe 3d-orbital character. At
the Fermi level a small band gap forms between the fully
occupied nonbonding and bonding bands and the empty an-
tibonding bands. The precise mechanism of the band-gap
formation is complicated and not fully understood, but both
the low symmetry at the atomic positions and the same sym-
metry of valence and conduction bands have been cited as
causes of the band-gap formation.14

With the aim of constructing a minimal model capable of
reproducing the band gap in FeSi, we concentrate on the Fe
atoms only, and we model FeSi by the Hubbard model on the
fcc lattice with nearest-neighbor hopping amplitude t and
on-site repulsion U. We will label the four sites of the fcc
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lattice in the simple cubic cell by the index �=1,2 ,3 ,4 �Fig.
1�. This means that each lattice site i= �R ,�� of the fcc lattice
is uniquely described by the position of the simple cubic unit
cell, R, and �. In order to allow for the possibility of a band
insulating state, we will model FeSi by a quarter-filled band,
i.e., we will assume that there are two electrons per simple
cubic unit cell. Furthermore, we assume that the on-site lat-
tice potential at one of the four sublattices, say �=1, is dif-
ferent from the remaining sublattices. If this potential is suf-
ficiently lower than for the remaining three sublattices, we
then can obviously end up with a band insulating state. The
Hamiltonian of the minimal model therefore reads

H = t �
�i,j��

ci�
† cj� + U�

i

ni↑ni↓ + �
i

�ini − 2B · �
i

Si, �1�

where �= ↑ ,↓ is the spin index and �i is the sublattice po-
tential which equals −� if i lies in the sublattice with �=1,
otherwise �i=0.

We have also allowed for the coupling of the spin degrees
of freedom Si=

1
2ci�

† ���ci� at site i to the applied magnetic
field B= �Bx ,0 ,Bz�. A remark is in place here regarding the
direction of the magnetic field. As usual, we will assume that
magnetic order develops along the z axis in spin space. Since
we want to describe both the longitudinal and the transverse
susceptibilities of the magnetic states, we allow for nonvan-
ishing Bx and Bz components of the magnetic field. Because
of the assumed invariance of the magnetized states with re-
spect to rotations along the z axis, we do not need to consider
the y component of the magnetic field.

We treat the Hamiltonian Eq. �1� in the mean-field ap-
proximation, allowing only for translationally invariant
states. Changing the basis from the set of Wannier orbitals
�R ,� ,�� to the basis of Bloch-type states �k ,� ,��, the
mean-field Hamiltonian reads

H = �
k

xk
†Mkxk, Mk = �Ak↑ B

B Ak↓
� , �2�

where

xk
† = �ck1↑

† ,ck2↑
† ,ck3↑

† ,ck4↑
† ,ck1↓

† ,ck2↓
† ,ck3↓

† ,ck4↓
† � �3�

is the eight-dimensional row vector of creation operators and
xk is the conjugate column vector of annihilation operators.
The 4�4 matrices Ak� are given by

Ak� =	
	1� 4tcxcy 4tcycz 4tcxcz

4tcxcy 	2� 4tcxcz 4tcycz

4tcycz 4tcxcz 	3� 4tcxcy

4tcxcz 4tcycz 4tcxcy 	4�


 , �4�

where c�=cos�k�a /2�, �=x ,y ,z, and a is the lattice constant
of the simple cubic lattice. Similarly,

B =	
− �1 0 0 0

0 − �2 0 0

0 0 − �3 0

0 0 0 − �4


 . �5�

For each k, the matrix Mk is diagonalized by eight Bloch
functions �k ,n ,
�, where n=1,2 ,3 ,4 is the band index and

= ↑ ,↓ is the pseudospin index. The creation operators for
�k ,n ,
� can be expressed in terms of the creation operators
for the Wannier functions as

ckn

† =

1
�L

�
R��

eik·�R+��Ukn
����cR��
† ,

where L is the number of simple cubic cells, Ukn
���� is an
eigenvector of Mk, and the corresponding eigenvalue is
�kn
.

The self-consistent potentials and magnetic fields are

	�� = �� + U�n�−�� − �Bz,

�� = Bx + U�m�x� ,

where we have introduced for all sublattices � their mean
occupation �n��� with spin-� electrons and their mean mag-
netization �m�x� in the x direction,

�n��� =
1

L
�
kn


fkn
�Ukn
�����2,

�m�x� =
1

L
�
kn


fkn
Ukn
��↑�Ukn
��↓� .

Here fkn
 denotes the ground-state occupation of the state
�k ,n ,
�. The total energy of the system is given by

E = �
kn


fkn
�kn
 + LU�
�=1

4

�m�x�2 − �n�↑��n�↓�� . �6�

III. GLOBAL PHASE DIAGRAM

In what follows we present the results obtained for the
mean-field Hamiltonian Eq. �2� in vanishing applied mag-
netic fields. Making the reasonable assumption that �n2��
= �n3��= �n4�� and taking into account that there are precisely
two electrons per unit cell of the simple cubic lattice and
therefore ����n���=2, the mean occupation numbers can be
parametrized by three parameters x, m1, and m2 in the fol-
lowing way:

�n1�� = 1
4 + 3x + �m1,

FIG. 1. Left: fcc lattice with two inequivalent types of sites.
Black and white sites correspond to �=1 and �=2,3 ,4, respec-
tively. Right: special points in the first Brillouin zone of the simple
cubic lattice.
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�n2�� = 1
4 − x + �m2.

For ��0 we expect x0. The parameters m1 and m2 mea-
sure the z axis magnetizations at sites 1 and 2, respectively.
The total z-axis magnetization is m=m1+3m2. In presence of
applied transverse fields, we shall again assume that �m2x�
= �m3x�= �m4x�, and therefore there are additional two order
parameters �m1x� and �m2x�. The total x-axis magnetization is
mx= �m1x�+3�m2x�.

The resulting mean-field phase diagram in the U vs �
plane at zero applied field B is schematically shown in Fig.
2. Five phases are found to be stable:

�i� Paramagnetic metal �PM�. This phase is realized at
small � and U. Its properties are most easily understood at
the point �=0 and U=0, which corresponds to a noninter-
acting quarter-filled tight-binding model on the fcc lattice.

�ii� Paramagnetic insulator �PI�. This phase is realized for
� sufficiently large with respect to U and t. A prototypical
example is realized for ��U, t. As one can see from Eq. �1�,
in this case the �=1 sites are fully occupied and there is a
trivial band gap at the Fermi level.

�iii� Fully polarized ferromagnetic metal �F3�. This phase
is realized for U sufficiently large with respect to � and t. A
prototypical example is realized for U��, t In this case we
are dealing with the standard quarter-filled Hubbard model
on an fcc lattice in the strong coupling limit. In this param-
eter range, the model is believed to be fully polarized also
beyond the mean-field approximation.15,16 This is because,
for our sign choice t�0 and for �=0, the noninteracting
density of states exhibits a peak at the lower band edge,
which together with the existence of closed loops of odd
length in the fcc lattice have been cited as favorable for the
occurrence of saturated ferromagnetism.15,16

�iv� Ferrimagnetic metal �F1�. This phase is realized in the
vicinity of the U=� line, provided we are sufficiently far
from the point U=�=0. This phase is characterized by op-
posite signs of m1 and m2. Moreover, the total magnetization
m=m1+3m2=0.

�v� Partially polarized ferromagnetic metal �F2�. This
phase is very similar to F3, but it differs from it by the

presence of minority spin electrons. In absence of applied
magnetic fields, the F2 phase is realized in the vicinity of the
U=� line at intermediate values of U and �. In the Appen-
dix we will show that finite magnetic fields stabilize the F2
phase at the expense of the F1 phase.

It is worth pointing out that most of the phase space in
Fig. 2 is occupied by the PI and F3 phases and that the
region of stability of these two phases is given roughly by
the line U��. This result can be simply understood in the
strong coupling limit � / t,U / t→� which can be solved ex-
actly. Namely, if ��U, the ground state is formed by fully
occupied orbitals with �=1. This corresponds to a paramag-
netic insulator with a charge and spin gap EG=�−U. On the
other hand, for U��, in the ground state there is one elec-
tron in every �=1 orbital and the remaining L electrons are
distributed among the 3L orbitals with ��1. The ground
state is macroscopically degenerate and both the spin and the
charge gaps vanish. In order to justify the magnetic ordering,
we need to take into account the finite hopping amplitudes t,
and at this point the analysis ceases to be exact.

IV. APPLICATION TO FeSi1−xGex

In what follows we will explore the consequences of the
hypothesis that the experimentally observed phase transition
in the isoelectronic alloys FeSi1−xGex between the paramag-
netic insulator FeSi and the ferromagnetic metal FeGe can be
modeled by the Hamiltonian Eq. �1�. Since increasing x im-
plies an increase in the lattice constant, the hopping ampli-
tude t should decrease with increasing x. Moreover, since �
arises from nontrivial hybridizations between the relevant
orbitals, we assume that � decreases with increasing x. Fur-
thermore, we assume that also � / t is a decreasing function of
x. On the other hand, we take the point of view that U is
largely independent of x, since the size of the relevant
Fe 3d-derived Wannier functions should not change much
with x.

Therefore we suggest that the family of isoelectronic al-
loys FeSi1−xGex can be described by a decreasing curve in
the U / t vs � / t plane. For definiteness, in what follows we
will study the linear path connecting the points U / t=0, � / t
=12 and U / t=8, � / t=0 which is depicted as a dotted line in
Fig. 2.

0

0.5

1

1.5

3 3.5 4 4.5 5 5.5 6 6.5 7

U/t

PI F2 F3

m1

m2

n1

n2

FIG. 3. Evolution of the orbitally resolved magnetizations m1

and m2 and occupation numbers n1 and n2 as functions of U / t along
the path depicted by the dotted line in Fig. 2.
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FIG. 2. Schematic mean-field phase diagram at zero applied
magnetic field. The phases are denoted as follows: PI-paramagnetic
insulator, PM-paramagnetic metal, F1-ferrimagnetic metal, F2-
partially polarized ferromagnetic metal, F3-fully polarized ferro-
magnetic metal. The alloys FeSi1−xGex with varying x are modeled
by the dotted line in phase space.
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Figure 3 shows the evolution of the orbitally resolved
magnetizations m1 and m2 and occupation numbers n1 and n2
along the chosen path. Two phase transitions can be ob-
served: one at U / t�3.5 and another one at U / t�6.5. Figure
4 shows that the large-�, small-U phase has a finite gap
between the highest occupied and the lowest unoccupied or-
bital and is therefore insulating. The total magnetic moment
of this phase vanishes and therefore we identify this phase as
a paramagnetic insulator. The remaining two phases are me-
tallic, since they do not have a spectral gap at the Fermi
level. They differ in magnetic properties: the intermediate
phase is only partially polarized, whereas the large-U phase
is fully polarized. It is worth pointing out that in the inter-
mediate phase, m1 and m2 can be both parallel and antipar-
allel, depending on U / t.

Now we compare our results to the data of Yeo et al.11 Let
us start with the metal-insulator transition, which has been
observed in resistivity measurements in FeSi1−xGex at x
�0.25. In this work, we associate the metal-insulator transi-
tion with the PI/F2 transition.

As regards the magnetic measurements, Yeo et al. have
studied the uniform magnetization m of the FeSi1−xGex al-
loys in an applied field B=0.1 T. Only for x�0.6 they have
found a steplike change of m as a function of temperature,
while for 0.25�x�0.6 a qualitatively different temperature
dependence of the magnetization has been found, with no
discontinuities of m at the transition temperature. In this
work, we associate the weakly magnetic region 0.25�x
�0.6 with the partially polarized F2 phase. On the other

hand, the strong ferromagnet at x�0.6 is interpreted as a
fully polarized ferromagnet. Before giving further arguments
in favor of this phase assignment, let us study the properties
of the phases PI, F2, and F3 in more detail.

A. Paramagnetic insulator

The self-consistent electronic band structure of a para-
magnetic insulator is shown in Fig. 5. The maximum of the
valence band is located along MR, whereas the minimum of
the conduction band lies along �X. The indirect band gap
diminishes upon increasing U and vanishes at the transition
to the partially polarized ferromagnet.

As already mentioned, the insulating behavior can be eas-
ily understood in the limit �� t, U in a local picture, accord-
ing to which the �=1 sites are fully occupied and the remain-
ing sites are empty. As shown in Fig. 6, this local picture is
essentially correct up to the phase boundary with the F2
phase.

B. Partially polarized ferromagnet

The orbitally and spin-resolved density of states inside the
F2 phase, but close to the band insulating phase, is shown in

-8
-7
-6
-5
-4
-3
-2
-1

X M R Γ X R

ε/
t

FIG. 5. The self-consistent electronic band structure near the
Fermi energy �dashed line� in the PI phase, � / t=6.9 and U / t=3.4.
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FIG. 6. Orbitally resolved density of states in the paramagnetic
PI phase, � / t=6.9 and U / t=3.4. The dashed line represents the
Fermi energy. Note that most of the electrons occupy the �=1
orbitals.
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FIG. 7. Orbitally and spin-resolved density of states in the par-
tially polarized F2 phase close to the PI/F2 boundary, � / t=6.6 and
U / t=3.6. The dashed line represents the Fermi energy.
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FIG. 4. Evolution of the total magnetization m=m1+3m2 and of
the gap at the Fermi level as functions of U / t along the path de-
picted by the dotted line in Fig. 2.
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Fig. 7. It is seen that in this region, the local picture is still
approximately valid. Note that the magnetization of the �
=1 orbital is opposite to the magnetization of the ��1 or-
bitals. A similar situation is realized also in the ferrimagnetic
F1 phase, but in that case the majority spins are insulating.
Note also that the density of states at the Fermi level is high,
because both spin projections in the ��1 orbitals, as well as
the minority spin in the �=1 orbital contribute.

As shown in Fig. 8, deeper in the F2 phase the local
picture does not apply anymore. Moreover, the magnetiza-
tions m1 and m2 do not have opposite signs. As should be
obvious from the comparison of Figs. 7 and 8, the main
effect of increasing U and decreasing � is that the energy of
the ��1 majority spins decreases, whereas the energy of the
�=1 minority spins increases. It should be noted, however,

that the density of states at the Fermi level stays large
throughout the F2 phase.

C. Fully polarized ferromagnet

With increasing U in the F2 phase, the fraction of the
minority spins decreases. In the fully polarized ferromagnet,
there are no more minority spins present. As shown in Fig. 9,
the density of states at the Fermi level decreases with respect
to the F2 phase.

D. Doping dependence of the specific heat

Yeo et al. have measured also the specific heat at low
temperatures as a function of doping. They found that the
electronic density of states at the Fermi level N��F� was neg-
ligible for x�0.25 and raised to an approximately constant
finite value for x�0.6. The nontrivial observation was that at
intermediate dopings 0.25�x�0.6 the electronic density of
states N��F� was enhanced and reached a maximum around
x�0.4. This finding has been cited as evidence in favor of
the Kondo insulator picture.11

Here we would like to point out that the specific heat data
of Yeo et al. is consistent with our interpretation of the mag-
netic data, namely, that the composition region 0.25�x
�0.6 corresponds to the partially polarized ferromagnet. In
fact, Fig. 10 shows the density of states at the Fermi level
N��F� along the path depicted by the dotted line in Fig. 2. It
can be seen that N��F� vanishes in the PI phase and is larger
in the partially polarized ferrimagnetic state F2 than in the
fully polarized state F3. This is a simple consequence of the
properties of the partially and fully polarized ferromagnets,
Figs. 8 and 9.

V. DISCUSSION

The model Eq. �1� introduced and studied in the present
paper is motivated by the concept of the magnetically in-
duced metal-insulator transition proposed by Anisimov et al.
in Ref. 12. Anisimov et al. have studied a phenomenological
model with two bands of unspecified origin which they ana-
lyzed in the mean-field approximation. In particular, it was
not clear whether the large-U ferromagnetic solution was
globally stable. The main difference of the present work with
respect to Ref. 12 is that we have described the isoelectronic
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FIG. 9. Orbitally and spin-resolved density of states in the fer-
romagnetic F3 phase, � / t=1.8 and U / t=6.8. The dashed line rep-
resents the Fermi energy.
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FIG. 10. Density of states at the Fermi energy along the path
depicted by the dotted line in Fig. 2.
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FIG. 8. Orbitally and spin-resolved density of states in the par-
tially polarized F2 phase, � / t=3 and U / t=6. The dashed line rep-
resents the Fermi energy.
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alloys FeSi1−xGex by a well-defined microscopic Hamil-
tonian, Eq. �1�. We have modeled the metal-insulator transi-
tion by a path in the phase space of this model whose end
points are well understood and correspond to a paramagnetic
insulator and to a ferromagnetic metal, as should be clear
from Fig. 2 and from the discussion in Sec. III. Another
important advantage of the lattice model Eq. �1� with respect
to the phenomenological model of Anisimov et al. is that it
can be studied by a multitude of analytical and numerical
techniques going far beyond the mean-field techniques appli-
cable to the model of Ref. 12.

Next we would like to justify the choice of parameters
used in our study of FeSi1−xGex. We start by pointing out that
by means of the particle-hole transformation

di↑
† = ci↓, di↓

† = − ci↑,

the model Eq. �1� can be mapped to a model of a similar
form expressed in terms of the operators di�

† , di�:

H = − t �
�i,j��

di�
† dj� + U�

i

ni↑ni↓ − �
i

�ini − 2B · �
i

Si.

�7�

Note the sign changes of t and �i with respect to Eq. �1�. The
model Eq. �7� is equivalent to Eq. �1�, if we take six di�

† , di�
particles per simple cubic cell. It is the di�

† , di� representation
which should be compared to the real material. We have
chosen to study the particle-hole reversed model Eq. �1� just
for convenience, since in that language we have to consider
only two electrons per simple cubic cell instead of six.

It is easy to see that, after diagonalization, the energy of
the resulting Bloch states in the di�

† ,di� representation is
−�kn
, and therefore, if we want to compare to the ab initio
results, the energy axis of our plots should be inverted. When
this is done, our insulating density of states Fig. 6 compares
for t�0.25 eV reasonably well with the ab initio result of
Mattheiss and Hamann13 in the energy interval −4 eV to
+1 eV around the Fermi level; see their Fig. 4. According to
Mattheiss and Hamann, in that energy interval there are ap-
proximately six fully occupied bands and two empty bands,
which we model �in the di�

† ,di� representation� by three fully
occupied and a single empty band. Of course, at this level of
simplification the agreement between our electron dispersion
curves and the ab initio results cannot be �and is not� quan-
titative. We have tried to fit the ab initio data with various
tight-binding fits and we have found that reasonable agree-
ment �except for the gap at the Fermi level� could be
achieved only in models with at least five d bands per Fe and
three p bands per Si,Ge; this would lead to models with eight
bands on the fcc lattice. In order to describe the finite gap we
would further need to take into account the complicated dis-
tortions of the fcc lattice in real materials. Since we are look-
ing for a simple qualitative picture for the metal-insulator
transition in FeSi1−xGex, we have decided to use the simpler
four-band model on the simple cubic lattice, despite its ob-
vious deficiencies.

Next we discuss our choice of � between 0 and 12t. Us-
ing our estimate of t this means that � can be as large as 3
eV. According to Krajčí and Hafner14 the gap separates oc-

cupied nonbonding states of Fe character from the empty
antibonding states of mixed Fe-Si character. We interpret �
as the hybridization shift of the antibonding states with re-
spect to the nonbonding ones; therefore its magnitude does
not seem to be unrealistically large.

The metal-insulator transition and the ferrimagnet-
ferromagnet transition occur at U�3.5t�0.9 eV and U
�6.5t�1.6 eV, respectively. Both of these values are sub-
stantially smaller than the d-electron Coulomb repulsion of
3.7 eV which had to be used in LDA+U calculations in order
to fit the experimental phase diagram.12 This is satisfactory,
since the Wannier orbitals should have also some Si admix-
ture. Note that the relevant U’s are smaller than the band-
width of a tight-binding model on the fcc lattice, 16t, thereby
placing the model in the intermediate coupling limit.

Finally, it should be pointed out that there is one aspect of
the metal-insulator transition which is not described properly
by the path PI-F2-F3. Namely, the experimental transition is
weakly first order, whereas our calculation predicts a con-
tinuous transition. As discussed in the Appendix, paths of the
type PI-F1-F3 can lead to a first-order transition, but their
magnetic properties are not completely satisfactory.

VI. CONCLUSION

In conclusion, we have introduced a simple microscopic
model which captures, we believe, the essential ingredients
of the physics of FeSi1−xGex: a band gap of single-particle
origin and a sizable Coulomb repulsion between the elec-
trons. The model exhibits a unusual type of metal-insulator
transition, identified previously in Ref. 12. The magnetic as-
pect of the transition is conventional: with increasing corre-
lations, a paramagnet turns into a ferromagnet. However, if
the paramagnet is a band insulator and the ferromagnet is
metallic, then the magnetic instability drives a metal-
insulator transition. This is how we can explain in a natural
way the paradoxical situation that the insulator is less corre-
lated than the metal.

We have solved the model in the mean-field approxima-
tion and we have found that the transition from the paramag-
netic insulator to the fully polarized ferromagnet proceeds
via an intermediate partially polarized phase. Our prediction
is in qualitative agreement with bulk measurements of
resistivity, specific heat and magnetic susceptibility in
FeSi1−xGex, and is directly falsifiable by a multitude of
microscopic magnetic field probes, such as the Mössbauer
effect, NMR spectroscopy, or neutron scattering.

Before concluding we would like to discuss the relation of
our results to the very recent experimental study of FeGe
under pressure,17 which was conducted with the aim of real-
izing a metal-insulator transition analogous to the chemical
pressure-driven transition in FeSi1−xGex. In agreement with
expectations, Pedrazzini et al.17 have found that at a critical
pressure pc�19 GPa the long-range spiral order is sup-
pressed. However, quite unexpectedly, the high-pressure
phase is not insulating, but metallic and it exhibits some
unknown kind of order indicated by an anomaly in the tem-
perature dependence of the resistivity. Pedrazzini et al.17

speculate that this anomaly is of magnetic origin. Another
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surprising result of Pedrazzini et al. is that even when FeGe
is compressed to the same density as FeSi, it stays metallic.

Both results of Pedrazzini et al.17 may be consistent with
our mean-field results. The crucial point to notice is that the
parameters U / t and � / t of FeSi1−xGex do not have to coin-
cide with U / t and � / t of FeGe compressed to the same
density. This means that the paths FeGe→FeSi and FeGe
→FeGe �23 GPa� in parameter space, although starting at the
same point, may diverge and their end points may lie in
different regions of the phase diagram: in the paramagnetic
insulating phase for FeSi, and in one of the intermediate
metallic phases for FeGe �23 GPa�.

An important open problem is whether our theoretical
predictions are artifacts of the approximation scheme or ge-
neric properties of the model. For instance, it could happen
that what we observe as an intermediate ferrimagnetic me-
tallic phase in the mean field approximation is in fact a con-
tinuation of the small-U phase, exhibiting the same symme-
tries as the paramagnetic insulator. In this picture the
difference between the small-U and “intermediate” states is
only quantitative: at small U, the �=1 orbital is occupied by
an essentially local singlet pair of electrons, whereas in the
“intermediate” phase the electron singlet delocalizes so that
one of the members of the singlet visits also the ��1 orbit-
als. The delocalized singlet could be called an exciton or a
Kondo singlet as well, revealing close relations between our
model, the Kondo insulators, and the excitonic
insulators.18,19 We intend to study some of these issues in the
future.
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APPENDIX

As an example of a path of the type PI-F1-F3 in the phase
diagram Fig. 2, we consider the line � / t=12. As can be seen
from Fig. 11, along this line the PI/F1 transition is weakly

first order: the band gap of the insulating phase has a finite
value at the transition.

Although in the F1 phase the orbital magnetizations m1
and m2 are both nonvanishing, the uniform magnetization is
zero, m=m1+3m2=0. In order to compare to the experimen-
tal magnetization data, we need to calculate the magnetiza-
tion in a small applied field. It is easy to see, however, that
the longitudinal susceptibility �i.e., the susceptibility in the
direction of the orbital magnetizations m1 and m2� at zero
temperature vanishes. In other words, the energy of the fer-
rimagnet does not change with Bz. On the other hand, as
shown in the inset of Fig. 11, a transverse field Bx is able to
cant both the static and the itinerant spins. As a result, the
ferrimagnet lowers its energy with Bx and the transverse sus-
ceptibility is finite. Thus, if the applied magnetic field is
sufficiently large,20 it will rotate the spontaneous magnetiza-
tion of the orbitals so that it is orthogonal to the applied field,
and a net magnetization in the direction of the applied field
always develops.

The magnitude of the transverse magnetization mx is plot-
ted in Fig. 11 as a function of U / t for an applied field Bx / t
=0.06. Three types of behavior are clearly observed, in quali-
tative agreement with experiment: a vanishing response in
the PI phase, full polarization in the F3 phase, and a moder-
ately large magnetization in the intermediate phase. How-
ever, this result cannot be taken seriously, since we had to
assume an applied field Bx / t=0.06, which corresponds in
physical units to Bx=260 T. For reasonable applied fields,
the magnetization of the F1 phase is very small.

Thus, we have the following dilemma: if F2 is the inter-
mediate phase, then the magnetization is of the correct order
of magnitude, but the metal-insulator transition is continu-
ous. On the other hand, if F1 is the intermediate phase, then
the transition is of first order, but the magnetization of the
intermediate phase is too small.

One possible way out of this dilemma is suggested by the
magnetic phase diagram plotted for � / t=12 in Fig. 12. The
phase diagram is qualitatively consistent with the strong-
coupling picture which predicts the existence of a critical
field Bc= 1

2 ��−U� and of two phases: a paramagnetic insula-
tor for B�Bc and a fully polarized ferromagnet for B�Bc.
Similarly as in the B=0 case, there exists an intermediate
phase close to the critical line Bc=Bc�U�. The nature of the
intermediate phase changes at sufficiently large magnetic
fields B, where an intermediate partially polarized ferromag-
netic phase F2 is stabilized.
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FIG. 11. Band gap �in units of t� and the transverse magnetiza-
tion mx as functions of U / t for � / t=12 and Bx / t=0.06. The inset
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Presumably, the critical field for stabilization of the F2
phase diminishes, as we approach the region of stability of
the F2 phase. Both a first-order metal-insulator transition and
a sizeable magnetization of the intermediate phase in a field

Bx=0.1 T might be achievable for paths PI-F1-F3 lying suf-
ficiently close to the region of stability of the F2 phase. Un-
fortunately, due to the smallness of the energy scale associ-
ated with Bx=0.1 T, this scenario is not readily testable.
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